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Some years ago, Cercignani, in studying the energy to mass ratio in a homoge-
neous equilibrium state, concluded that the associated DVMs (Discrete Velocity
Models) ratio would be a drawback for DVMs. Here with planar DVMs,
dimension d=2, we try to answer this criticism. First, we study four elementary
classes of pth squares planar DVMs with or without rest-particle, where the
Hausdorff dimensions of the associated lattices, when p increases up to infinity,
are dH=0, 1, 2, 2. The DVM energy to mass ratio leads to a fictitious dimension
dp and the problem is to see whether dp 4 2, with p increasing or not. Our result,
taking into account the constraints due to the DVM conservation laws, is that
this is possible only for the models with dH=2 for the associated lattices with
an infinite number of velocities. We also discuss intermediate cases, for instance
p finite for the standard DVMs is sufficient in restricted cases. Second, we study
two families of intermediate models between the above dH=1, 2 with a rest-
particle. Only for one family, called a-cross models with dH=2, do we still find
that the continuous mass ratio condition for the dimension can be satisfied.

KEY WORDS: Kinetic theory; discrete models; Boltzmann equation; Hausdorff
dimension.

1. INTRODUCTION AND RESULTS FOR SIX PHYSICAL CLASSES OF

MODELS

The first connection between DVMs and continuous relations (called the
first continuous relation) was in the pioneering Broadwell (1) DVMs infinite
shock-wave solution. The continuous mass ratio dM=M(i)/M (ii) relation,
at the asymptotic states, was automatically satisfied. Previously (2) we



verified this continuous relation for other infinite shocks, and we also
found more general solutions, with constraints on the parameters.

More recently (the second continuous relation), Cercignani criticized
(in dimension d=3) the associated results with DVMs. (3, 4) We repeat some
of Cercignani’s criticisms (5) concerning the standard mass M, energy E, and
the E/M ratio:

‘‘In a (homogeneous) equilibrium state we should have

M=F C
i

Mi dx, E=(1/2) F C
i

c2
i Mi dx, (1a)

where Mi is a Maxwellian distribution given by

Mi=A exp(−bmc2
i /2), b=1/(kT) (1b)

and ci=vi if we assume the gas at rest... . This gives not only the desired
identification of the temperature... satisfactory for the usual Boltzmann gas
with continuous velocities, but in the case of a general gas it would imply

d=3, d/(2bm)=E/M=(1/2) C
i

c2
i exp(−bmc2

i /2)/ C
i

exp(−bmc2
i /2),

(1c)

i.e., for any value of the parameter b

d=3, d/2b=C
i

c2
i exp(−bc2

i )/ C
i

exp(−bc2
i ), (1d)

which is obviously absurd, unless we go to the limit of infinitely many
velocities with a continuous distribution.’’

Our problem is whether the associated planar DVMs can have dimen-
sion d equivalent to 2 or not. In the continuous theory, b is inversely pro-
portional to the temperature T. A great subjacent problem is whether we
can speak about temperature in DVMs. Since the paper of Cercignani in
1993, many people (myself included) avoid using the word ‘‘temperature’’
in DVMs.

Here we will be mainly interested in whether we can recover the notion
of the true continuous dimension in DVMs or not. Our strategy is deduced
from that criticism. We recall that the standard DVMs, (1–4) existing for fifty
years, have, in general, only a finite number of velocities with many differ-
ent distributions in the plane. So, the first answer to this criticism is to
see whether the associated DVMs ratios can satisfy d equivalent to 2 or not
with a finite number of velocities, here squares. To a negative answer, we
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augment the number of squares, eventually up to infinity. The second
question, if we can satisfy this criticism, is to see whether this is possible only
for particular distributions of the velocities in the plane or not. Then the
crucial point is to characterize the models satisfying or not satisfying this
criticism.

For these reasons we study four elementary models in Fig. 1 and two
more complex models in Fig. 3. In fact, with our DVMs a finite number of
pth squares, in general, is sufficient to obtain a stable DVM dimension,

(a)

(b)

(c) (d)

Fig. 1. (a) Nested p=1, 2, 3, 4 squares, (b) Class I filling x, y, y= ± x axes, p=1, 2,... 5th
squares, (c) Class II filling all coordinates, p=1, 2...5th squares, (d) p=1, 2, 3, 4 Nicodin
squares.
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when b in (1d) is not too small. However, this number is not constant and
depends on the values DVMs dimension, but this number is not constant
and depends on a parameter similar to b in (1d). An infinite number is
necessary only when this parameter goes to zero. It can happen that
increasing the number of velocities does not improve our DVM dimension,
which is fixed by only a few velocities. This means that in order to recover
the planar dimension we must introduce other constraints than (1d).

All our DVMs with finite or infinite p (Section 2) are physical (6–8) with
only mass, momentum, and energy invariants (Lemmas 1, 1Œ, and 1œ). The
tools (6–8) are that, for a single-gas (a species for a mixture), starting from a
collision with velocities along rectangles or squares and three belonging to
a previous physical model, we can add the last one.

First, we study four elementary classes of pth square DVMs, here p
arbitrary, with (Figs. 1a–c) or without (Fig. 1d) rest-particle. The Nested (2)

and Class I (8) models (Figs. 1a, b) have velocities vFi along the two axes and
the bisectors of the plane, but with a uniform repartition only for Class I,
as a 1-dimensional lattice when p increases up to infinity. For Class II (8)

(Fig. 1c), when the number of squares increases up to infinity all integer
coordinates of the plane are filled, as a 2-dimensional lattice. The Nicodin
models (9) without rest-particle (Fig. 1d) fill all odd-integer coordinates of
the plane, as a 2-dimensional lattice.

For these four models the associated Hausdorff dimensions (Section 2)
are dH=0, 1, 2, 2. With only Rankine–Hugoniot relations(2–4) (no exact solu-
tions), we study one-dimensional traveling waves along the xF-axis with isotro-
pic downstream (i) state and, at the upstream (ii) state, nonzero densities fixed.

Second, we study two classes of models intermediate between Class I
and II, where we add to Class I velocities parallel to the xF and yF axes. The
first, called Extended Class I, and the second, Restricted Class II (Fig. 3),
with dH=1, 2 have either an infinite or a finite number of velocities less
than Class II.

In Section 2, we consider the second (1d) Maxwellian associated
DVMs relation with only the equilibrium DVMs densities at the (i) isotro-
pic state. Assuming one density normalized to 1, with binary collisions, we
obtain all densities as functions of another density. Then we can include for
the densities (Eqs. 4c, cŒ, cœ) different terms of the type e−bvF2

q (velocity vFq)
and b a continuous parameter. For a pth square, we define a fictitious
dimension dp:

p fixed: 2E (i)/M(i)=dp/2b. (1e)

If, for b fixed, we augment the number of squares, then the fictitious
dimension increases (Lemmas 2, 2Œ, 2œ) and becomes stable dpmax

for p larger
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(a)

(b)

(c)

Fig. 2. (a) second continuous: 0.1 < b < 4, (i) isotropic, rest-particle, Nested … Class
I … Class II, (b) Second continuous: b=10−r, r=1, 2,... 8 rest-particle, Nested … Class
I … Class II, (c) second continuous: 0.1 < b < 0.25, without rest-particle, Nicodin model.

than pmax. But this necessary number of squares is not constant: a finite
number for b finite and an infinite number when b decreases up to 0. If we
recall that the standard DVMs(1 − 3) mean a fixed number of velocities (here
squares), we see that we cannot study the second relation (1e) in this way.
Furthermore, the infinite number when b goes to 0 means that we must
make a comparison with the associated lattices.

With pmax varying with b, we compare dpmax
with the planar dimension

d=2. The results are catastrophic (Fig. 2) and justify Cercignani’s criticism
of DVMs. dpmax

is not a constant close to 2 ( 4 2), except for Class II,
Nicodin models and only for a fixed b interval b ¥ (0, bmax) including 0. For
these models, outside these intervals, either dpmax

decreases and is less than 2
or increases with values higher than 2. Increasing the number of velocities
does not improve our search of the d=2 dimension and we must introduce
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other constraints than (1e). For the other two Nested and Class I models,
then d different from 2 decreases to 0 or 1 when b decreases to 0. All these
results illustrate the weakness of DVMs compared to the continuous theory
because the continuous (1d) relation can be obtained with the (1e) DVMs,
only for particular classes of models and with b only in particular intervals.

Let us go back to the standard DVMs with a fixed number p of squares
(Section 2.5) for the Nicodin and Class II models. We have the planar
dimension d equivalent to 2 only in a finite b interval and the interval
increases when the fixed number of squares increases.

In Section 3, always for the second DVMs (1e) relation at the (i) iso-
tropic state, we add the three conservation laws linking the (i) state to the (ii)
upstream state. Then we get restrictions coming from the positivity of
E (i)/M (i) and the positivity of the discrete microscopic densities (studied
mainly in Appendix B.3). The main result is that b must belong to a well-
defined finite interval (Lemmas 3, 3Œ). Then (Fig. 2) the Cercignani planar
dimension d equivalent to 2 is satisfied for Class II and Nicodin models with
dH=2 but not for Nested and Class I models with dH=0, 1. However, b in
DVMs is not, in general, a continuous parameter. We briefly recall results
for infinite-shock solutions at the (ii) state, for Class II models with d
equivalent to 2 satisfied from the (i) state.

In Section 4, we study two intermediate classes between the Class I
and II models. For the first class (Section 4.1), called Extended Class I, we
have dH=1 and an infinite number of missing Class II velocities, when p
increases to infinity. When b goes to to 0, the fictitious dimension cannot
satisfy the planar d=2 dimension. For the second (Fig. 3) family (Section 4.2),
called a-cross, with only a finite number 4a(a − 1) of missing Class II velo-
cities vF, we have dH=2 and the fictitious dimension can satisfy d equiva-
lent to 2. The continuous condition for the dimension can be satisfied but with
the number p increasing to infinity.

Finally, in Section 5, we show that if instead of regular grids with
mesh steps=1, we choose 1/2, 1/4,..., the geometrical structure of the
curves and the link with the dimension are not changed.

2. FOUR CLASSES OF PHYSICAL DVMS pth SQUARES, p GOING

TO INFINITY

We study four classes of planar DVMs p-squares giving lattices when
p goes to infinity: Nested and Class I and II squares with rest-particle
vF(0, 0) (Sections 2.1 and 2.2) and Nicodin squares without rest-particle
(Section 2.3). For p fixed, Eqs. (3a, aŒ, aœ), we give the size Lp, the number
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(a) (b)

(c) (d)

Fig. 3. (a) a=2-Cross, r=3, p=[5]=[a+r], (b) a=8-Cross, r=3, p=[11]=[a+r],
(c) a=13-Cross, r=2, p=[15]=[a+r], (d) p=a+1, from p=a physical and a-cross,
p=[a+r] from [a+r − 1].

of velocities vFi or densities Np, and the Hausdorff dimension dH when p
goes to infinity.

:
Np Lp dH=(log Np/log Lp)p Q .

Class I NI=8p+1 2p dH Q 1

Nested 8p+1 2p dH Q 0

Class II NII=4p(p+1)+1 2p dH Q 2

Nicodin 4p2 2(2p+1) dH Q 2

: .
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For these planar d=2 models, only Class II and Nicodin models have
dH=2.

First we explain briefly that these models are physical,(6–8) without
spurious invariants. Let us consider only binary collisions (no multiple) with
four velocities vFi(x, y) satisfying

C
2

1
vFi=C

4

3
vFi, C

2

1
(vFi)2=C

4

3
(vFi)2 (2)

and that are at the tops of squares or rectangles. With three velocities
belonging to an old physical model, we can add, for a new physical model,
the density associated to the last velocity. Starting with an old physical
model with only physical conservation relations (no spurious), adding the
new collision, we must add the new density in order to satisfy the new con-
servation relations. In particular,(6) for a single-gas (such as here) or for a
species of a mixture model with four velocities along a square or a rectangle
and three densities belonging to a physical model, we can add the last one for
a new physical model (the most important tool here).

Second, we determine the densities associated to an isotropic (i) state
and write the second fictitious continuous DVMs relation (1e).

2.1. Class I and Nested p-Squares (Figs. 1a, b): vF i(x, y) Velocities,

x, y Integers or 0:

vFi: (0, 0), ( ± aq, 0), (0, ± aq), ( ± aq, ± aq), ( ± aq, + aq),

q=1, 2,... p integer, Class I aq=q, Nested aq=2q − 1 (3a)

We see that these models only have velocities along the two coordinate
axes and the bisectors, the difference being a uniform distribution only for
Class I. First we show that these models are physical, using the recalled
tool of binary collisions with three densities known and starting with a
physical model. Second, for the isotropic (i) state, we write the associated
fictitious (1e) DVMs energy to mass ratio dp/2b. Third, for b fixed, we
prove that the fictitious dimension dp increases with p.

Lemma 1 (Physical Class II(8) and Nested(2) Models). We assume
that the pth models are physical and prove that the p+1 ones are also
physical. Starting with the p=1, 9vFi physical (3, 4) model, the p=2, 3,... th
models are physical. For the proof we write some velocities vF(x, y) asso-
ciated to binary collisions satisfying (2):
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Class I: (8) ap=p \ 1

(i) (p, 1)+(p, −1)=(p − 1, 0)+(p+1, 0),

(1, p)+(−1, p)=(0, p − 1)+(0, p+1), (3b)

(ii) (p+1, 0)+(0, p+1)=(0, 0)+(p+1, p+1);

Nested: (2) ap=2p − 1=2ap − 1 \ 1

(i) (ap, ap)+(ap, −ap)=(0, 0)+(ap+1, 0),

(ii) (ap+1, 0)+(0, ap+1)=(0, 0)+(ap+1, ap+1).
(3c)

With (i) we add the new densities associated to the velocity (ap+1, 0)
along the xF axis and (0, ap+1) along the yF axis with x, y symmetry
(exchanging x and y in the velocities). From these new densities along the
xF, yF axes and the rest-particle with (ii), we add the new density (ap+1, ap+1)
along the bisector. With x, y symmetries we add the associated densities in
the other quadrants. Starting with the p=1, 9vFi model, the p=2, 3,... and
all pth models are physical.

Isotropic (i) State

To the vF(x=aq, y=as), we associate the densities n (i)
aq, as

at the isotro-
pic (i) state. All n (i)

x, y with the same velocity modulus |vF(x, y)| are equal,
giving a multiplicity of 4 for both n (i)

aq, 0=n(i)
0, aq

and n (i)
aq, aq

. Keeping only the
independent n (i)

x, y along the x \ 0, y=x axes and the rest-particle r (i), we
can write both the mass M (i), energy E (i), and momentum J (i):

M (i)=r(i)+ C
p

q=1
4[n(i)

aq, 0+n (i)
aq, aq

], E (i)=C
q

2a2
q[n (i)

aq, 0+2n(i)
aq, aq

], J (i)=0.
(4a)

First, assuming one density normalized to 1, another to m > 1, with binary
collisions(2 − 8) we deduce all densities satisfying a general result
n (i)

x, y=m2/mvF(x, y)2
, checked with collisions. Second, we define a parameter

b :=log m > 0, deduce all densities functions of e−ba2
q, and substitute into

the macroscopic quantities (4a):

1=a1=n(i)
a1, a1

, n (i)
0.a1

=n(i)
a1, 0=m, n (i)

x, y=m2/mvF(x, y)2
=m2 − x2 − y2

,

n (i)
aq, 0=n(i)

0, aq
=m2/ma2

q, (0, 0)+(1, 1)=(0, 1)+(1, 0), r (i)=m2,
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(0, 0)+(aq, aq)=(aq, 0)+(0, aq), n (i)
aq, aq

=m2/m2a2
q,

n (i)
aq, aq

r (i)=n(i)
0, aq

n (i)
aq, 0=m4/m2a2

q... (4b)

n(i)
x, y/m2=e−bvF(x, y)2

, M(i)/4m2=1/4+ C
p

q=1
e−ba2

q(1+e−ba2
q)=Dp=1/4+Bp,

E (i)/2m2= C
p

q=1
a2

qe−ba2
q(1+2e−ba2

q)=−“bDp=Ap > Ap − 1.
(4c1)

The DVMs energy to mass ratio, written with sums of gaussians e−ba2
q,

depends only on b and p, and we write the second DVMs (1e) relation, with
a fictitious dimension dp:

2E (i)/M(i)=−“bDp/Dp=Ap/(1/4+Bp)=dp/2b. (4c2)

Lemma 2. For b fixed, dp increases with p or dp \ dp − 1 and it is
sufficient to prove ApBp − 1 > Ap − 1Bp (proof with microscopic positivity
given in Appendix A.1).

2.2. Class II p-Squares (Fig. 1c), aq=q, vFi(x, y) Velocities with x, y

Integers or 0:

To Class I, we add all integer coordinates between the xF, yF axes and
the bisectors:

Class II: vFi: (0, 0), ( ± q, ± s), ( ± s, ± q), ( + q, ± s), ( + s, ± q),

s=0, 1...q, q=1...p (3aŒ)

Lemma 1Œ (Physical Class II Models(8)). The p=1, 9vFi model is
physical. (2–4) From a physical pth square, we prove that the p+1 one is
physical. We still use binary collisions in squares and rectangles with three
associated densities belonging to a previous physical model. We only write
(x, y) for vF(x, y) and use the x, y symmetries for the other densities.

As in (i) and (ii) for Class I (3c), we add the densities associated to
(p+1, 0), (0, p+1), and (p+1, p+1) along the two coordinate axes and
the bisectors.

In (iii), we add new densities associated to (p+1, j) and (j, p+1), not
present in Class I: first the densities parallel to the y-axis with x=p+1
and, exchanging x and y, those parallel to the x-axis with y=p+1:

(iii) (p+1, 0)+(p, j)=(p, 0)+(p+1, j), j=1, 2,..., p,

(0, p+1)+(j, p)=(0, p)+(j, p+1), j=1, 2,..., p.
(3bŒ)

The (p+1)th square is physical and all pth squares are physical.
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Isotropic (i) State

The densities associated to velocities with the same modulus being
equal, to the Class I densities we only add the new densities parallel to the
coordinate axes with a multiplicity of 8 for n (i)

q, s, s=1,..., q − 1. Starting with
densities n (i)

x > 0, y \ 0, we use the x, y symmetries for the other:

M(i)=r (i)+ C
p

q=1
4 5n (i)

q, 0+n(i)
q, q+2 C

q − 1

s=1
n (i)

q, s
6 , J (i)=0,

E (i)=C
q

52q2(n (i)
q, 0+2n(i)

q, q)+4 C
q − 1

s=1
(q2+s2) n (i)

q, s
6 .

(4aŒ)

With the assumptions of Class I, we deduce n (i)
q, s and the second DVMs

continuous relation:

n (i)
1, 1=1, n (i)

0, 1=m, b=log m, n (i)
q, s/m2=e−b(q2+s2),

Dp=M(i)/4m2=1/4+Bp, E (i)/2m2=−“bDp=Ap,

Bp= C
p

q=1

5e−bq2
(1+e−bq2

)+2 C
q − 1

s=1
e−b(q2+s2)6=1/4+Bp,

Ap= C
p

q=1

5e−bq2
q2(1+2e−bq2

)+2 C
q − 1

s=1
(q2+s2) e−b(q2+s2)6 ,

2E(i)/M(i)=dp/2b=−“bDp/Dp=Ap/(1/4+Bp).

(4bŒ)

Lemma 2Œ. For b fixed, dp increases with p or dp \ dp − 1 and it is
sufficient to prove ApBp − 1 > Ap − 1Bp (proof with microscopic positivity
given in Appendix A.2).

2.3. Nicodin pth Squares (Fig. 1d), aq=2q−1, vF i(x, y) x, y Odd

Integers, without (0, 0):

Nicodin: vFi: ( ± aq, ± as), ( ± as, ± aq), ( + aq, ± as), ( + as, ± aq),

s=0, 1,..., q, q=1,..., p. (3aœ)

Contrary to the previous models, we have no velocities along the y axis
with x=0, but still velocities along the bisectors.

Lemma 1œ (Physical Nicodin(9) Models). Assuming that the p − 1th
square is physical, we prove that the p one is physical. We still use veloci-
ties at the tops of squares and rectangles with three associated densities
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belonging to a previous physical model. We write only (x, y) for
vF(x \ − 1, y \ − 1) and use the x, y symmetries for the other densities: As
for Class II, in (i) we first add the (ap, 1) associated density but with
y=1 ] 0 and with the x, y exchanges (1, ap). In (ii) and with the x, y
exchanges we add the densities associated to (ap, as), (as, ap), while in (iii)
they are the densities with velocities along the bisectors:

(i) (ap − 1, 3)+(ap − 1, −1)=(ap − 2, 1)+(ap, 1),

(ii) (ap, 1)+(ap − 1, aj)=(ap − 1, 1)+(ap, aj) j=2, 3,..., p − 1,

(iii) (ap − 1, ap)+(ap, ap − 1)=(ap − 1, ap − 1)+(ap, ap).

(3bœ)

The pth square is physical, from the p=2, 16vF physical, (9) all pth
squares are physical.

Isotropic (i) state with equal densities associated to velocities with the
same modulus: From vF2(aq, as)=vF2(as, aq)=a2

q+a2
s we have a multiplicity

of 8 for n (i)
aq, as

, s=1,... q − 1 and only 4 for n (i)
aq, aq

. We write the macroscopic
quantities:

M (i)/4= C
p

q=1

5n (i)
aq, aq

+2 C
q − 1

s=1
n (i)

aq, as
6 , J (i)=0,

E (i)/4=C
q

5a2
qn (i)

aq, aq
+ C

q − 1

s=1
(a2

q+a2
s ) n (i)

aq, as
6 .

(4aœ)

We normalize one density, introduce a parameter m, deduce n (i)
aq, as

, and
check (i) in (3bœ):

n (i)
1, 3=n(i)

3, 1=1, n (i)
1, 1=m8, n (i)

3, 3=m−8,

n (i)
1, 3n (i)

3, 1=n(i)
1, 1n (i)

3, 3=1, n (i)
ap, aq

=m10/ma2
p+a2

q,

[i]: n (i)
ap − 1, −1n (i)

ap − 1, 3=n(i)
ap, 1n (i)

ap − 2, 1=m20/m2a2
p − 16p+26.

(4bœ)

We could also check (ii), (iii). With b=log m, we write the second fictitious
(1e) relation:

2E (i)/M(i)=dp/2b=−“bDp/Dp,

Dp= C
p

q=1

5e−2ba2
q+2 C

q − 1

s=1
e−b(a2

q+a2
s )6=5 C

p

q=1
e−ba2

q62

,

− “bDp= C
p

q=1
2 5a2

qe−2ba2
q+ C

q − 1

s=1
(a2

q+a2
s ) e−b(a2

q+a2
s )6.
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We define cp, dp and with some algebra rewrite the energy to mass ratio:

cp :=4 C
p

q=2
q(q − 1) e−4bq(q − 1), dp :=1+ C

p

q=2
e−4bq(q − 1),

dp/4b = 1+cp/dp > 1. (4cœ)

We note that (4cœ) implies dp/4b > 1 or dp > 4b. Numerically we have
verified:

1+cpmax
/dpmax

4 1/2b, dpmax
4 2 for b ¥ (10−8, 0.1),

but decreases, going to 1 with the same maximal pmax. We also find the
stable fictitious dimension dpmax

greater than 2 for b greater than 0.1.
Unfortunately, we do not have a general analytical proof (except for a
fixed p number of squares as we shall see in Section 2.5) because when b
decreases, the pmax number of squares for stable dimensional values increa-
ses and goes to infinity when b goes to 0. For instance, pmax 4 2500 for
b=10−6 and still larger for smaller b. On the contrary, pmax is very small
when b is finite.

Lemma 2œ. For b fixed, dp increases with p or dp > dp − 1 (proof in
Appendix A.3).

2.4. Second DVMs Continuous Relation (1e) with Only Isotropic (i)

State

In this subsection, we only compare the (1d) continuous result d=2
with the DVMs (1e) fictitious dimension dpmax

(b). No other constraints
coming from discrete kinetic theory are included. From p and b fixed
we calculate in the energy to mass ratio written previously dp/2b and
(Figs. 2a–c) deduce dpmax

(b). We consider the maximal pth square such
that the dimension remains stable when p is larger than pmax. We recall
(Lemmas 2–...) that for b fixed, the fictitious dimension increases with p, but
it can happen that these increases are very small, not significant and not
leading to the true continuous dimension.

These curves illustrate Cercignani’s criticism of DVMs (recall that for
the planar models dpmax

(b) must be 2!!). If we exclude the intervals
b ¥ [0, 1], [0, 0.1] for the Class II and Nicodin models where the planar
dimension is satisfied, the stable fictitious curves have dimensions different
from 2 and not constant.
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For the models with rest-particle (Figs. 2a, b), (Nested, Classes I and II),
the limits for the three curves decrease for b larger than 1.5 and are the
same for b large, while for b going to 0 they are the dH=0, 1, 2 of the asso-
ciated lattices. We notice: Nested … Class I … Class II and dNested [ dClass I [

dClass II. When b decreases, pmax increases, and in Fig. 2a we give some values
for b ¥ (4., 0.1). In Fig. 2b, for b smaller than 0.1 and the fictitious dimen-
sions going to the Hausdorff dimensions, we give the increasing pmax values
for b=10−s, s=1, 2,..., 8. For Class II dpmax

is equivalent to 2, while for
Class I, it is equivalent to 1 for s larger than 3. For b=10−4 fixed and
Classes I and II, we give fictitious dimensions close to the limits 1 and 2
when p increases up to pmax:

:b=10−4, p= 1 50 150 250 400
I, dp= 2.610−4 0.2 0.85 4 1 4 1
II, dp= 2.610−4 0.22 1.4 1.99 4 2

: . (5a1)

For the Nested models, the maximal fictitious dimension decreases
toward 0. We give small b and dpmax

values:

:Nested, b=10−s, s= 10 39 91 112
(pmax , dpmax

)= (19, 0.087) (67, 0.022) (154, 0.009) (190, 0.0077)
:.

(5a2)

For the Nicodin model (no rest-particle), except for the interval
b ¥ (0, 0.1) with dpmax

=dH=2, then the stable dimension becomes larger
than 2 and increases with b. In Fig. 2c, we give the decreasing pmax for
b ¥ (0.1, 0.25) and here, the pmax and dpmax

for smaller and larger b values:

: Nicodin: b=10−s, s= 1 3 4 5 6 7
d 4 2, pmax= 9 80 246 774 2443 7719

pmax < 6, (b, dpmax
> 2)= (0.25, 2.004) (0.5, 2.28) (1., 4.01)

:. (5b)

For all pth squares smaller than pmax associated to the presented
Class I–II curves, the dp(b) curves are in the intermediate domains between
the Nested curve and either the Class I or Class II curve. For stable
dimensions and b varying, we cannot consider a fixed number of p-squares
because p increases up to infinity when b decreases to 0, while for b large a
small number of pth squares is sufficient. In both Classes I and II for b
fixed, we find a similar pmax value for stable dimensions but different from
the Nested ones. The Nicodin model without rest-particle is very different
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from the three models with rest-particle but, like Class II, has a subdomain
with stable dimensions equivalent to 2.

A shortcoming of our study is that for models with rest-particle and b
larger than 1, or without rest-particle and b larger than 0.1, adding more
velocities, the planar dimension 2 cannot be satisfied. This means that we
cannot, like Cercignani in the continuous theory, in DVMs with only one
asymptotic state, consider only the energy to mass ratio. We must include
other DVM constraints, for instance, add another asymptotic (ii) state and
check the positivity. To the (i) isotropic state, we must add the (ii) upstream
state and the conservation laws. As we shall see (Section 3), for the models
with rest-particle (Figs. 1a–c), the main result will be: dpmax

larger than 2b,
leading to the continuous Cercignani requirement dpmax

equivalent to 2, only
for Class II.

2.5. The Four Previous Models with Only a Fixed Number of pth-

Squares

The standard use of DVMs corresponds to a fixed number of veloci-
ties, contrary to above where we increase this number up to stable dimen-
sion values. This number pmax increases when b decreases, so that we expect
more and more changes when b decreases.

First, we consider the four previous classes of models for a fixed
number p of squares and b varying. We forget p and rewrite the previous
energy to mass ratios as:

Dp=dR+D, dR=0 or 1/4, D > 0, DŒ < 0, Dœ > 0, d/2b=DŒ/(dR+D).
(6a)

We show, with the Schwarz inequality, that for p fixed, d/2b is decreasing:

[dR+D]2 (d/2b)Œ=−DDœ+[DŒ]2 − dRDœ < 0. (6b)

Second, we restrict our study to the Class II and Nicodin models, for p
and pmax fixed sufficiently large such that the planar dimension 2 exists for
b not too small. We let b decrease and rewrite (6a) with derivatives now for
both D and d:

(dR+D) dŒ=−(d+2) DŒ − 2bDœ. (6c)

When b=0, then D, DŒ, and Dœ are finite. In the rhs, the first term is posi-
tive and finite while the second is negative, going to 0 when b goes to 0.
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For b sufficiently small, dŒ is positive and the fictitious dimension decreases
when b decreases.

For instance, let us start with these two models where dp 4 2 respec-
tively for b=0.1, p=10 (Fig. 2c) and b=0.5, p=5 (Fig. 2a). We give the
d10(b), d5(b) values when b decreases:

: b=10−s s= 1 2 6 10 15
Nicodin d10(b)= 2 1.84 34.10−5 34.10−9 34.10−14

Class II, d5(0.5) 4 2, d5(b)= 1.81 0.37 4.10−5 4.10−9 4.10−14

:.
(6d)

For these p=10, 5 models, the planar dimension d 4 2 is only in b ¥

(0.09, 0.1), (0.5, 1).
More generally for each number of squares p fixed, we find for the

dimension equivalent to 2, an interval b ¥ (bmin, bmax) and bmin decreases
when p increases. However, for b ¥ (0, bmin), the dp(b) curves decrease when
b decreases and go to 0 when b goes to 0.

In conclusion, for these DVMs with a fixed p number of squares, we can
obtain solutions satisfying the second continuous relation with stable dimen-
sion equivalent to 2, but only in fixed b intervals. In the continuous theory,
b is inversely proportional to the temperature T or internal energy EI. At
the (i) isotropic state (J (i)=0), then when d is constant, the ratio for the
internal energy is the ratio for the corresponding b values. For these DVMs
with a finite number of squares, the second continuous relation can be
satisfied only in intervals of these macroscopic quantities and the planar
2-dimension solutions are only in fixed b (or T, or EI) intervals with b not
too small.

3. UPSTREAM (ii) STATE AND CONSERVATION LAWS

We add an asymptotic (ii) state and try to see whether positivity
restricts the b values.

3.1. aqj
=2 2qj −1 Nested, aqj

=qj Classes I and II Models Leading to

dp \ 2b

We study two classes of solutions for these models. The nonzero (ii)
state densities are either at the x positive or x negative axis. In both cases
we find the same result: dp \ 2b, which for Class II (contrary to Class I and
Nested models), excludes the b values with dpmax

different from 2.
We consider traveling waves g=x − zt, (speed z), with isotropic (i)

state and densities n (ii)
x, y=nx, y+n(i)

x, y at the (ii) state associated to vF(x, y) and
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only a fixed number of n (ii)
−aqj

, 0 ] 0 with velocities − vqj
=−aqj

< 0 along
the x < 0-axis. Their number and their location is fixed: 1 [ qmin [ qj [

qmax [ p.
In Appendix B.1, for the reader not familiar with DVM conservation

laws, we briefly give some explanations. We write in Appendix B.1 and B.2,
with microscopic densities, the mass [M], momentum [J], and energy [E]
conservation laws that we rewrite here with the two states (i) and (ii):

M(ii)=C n(ii)
−aqj

, 0, J(ii)=−C vqj
n(ii)

−aqj
, 0,

2E(ii)=C v2
qj

n(ii)
−aqj

, 0, vqj
=aqj

> 0,
(7a)

J(ii)=z(M(ii) −M(i)), 2E(ii)=zJ(ii)+E(i), 2z(E(i) −E(ii))=C
qi

n(ii)
−aqi

, 0v3
qi

.
(7b)

From the mass conservation: [M], written with microscopic densities
first relation in (7b) with macroscopic quantities, we only have ;(aq+z) n (ii)

−aq, 0

at the (ii) state giving the macroscopic terms zM ii and J (ii). At the (i) state,
the sum with terms proportional to z gives zM (i) and 0 for the other.

Similarly, from the momentum conservation [J], the second relation
in (7b), we only have macroscopic quantities. Finally, from the energy
conservation [E] we also get macroscopic quantities, except for the terms
a3

qn (ii)
−aq, 0 in (7b). We define

z :=M(i)/E(i) > 0, dp/2b=2/z, n̄j :=n(ii)
−aqj

, 0/E (i), 1 [ qmin < ...qj... [ qmax,
(7c1)

giving with (7a,b) for the three conservation laws, microscopic densities n̄j

at the (ii) state:

Aj :=n̄j(z+vqj
), 1=C

j
Aj/zz=C

j
vqj

Aj=C
j

v2
qj

Aj/2z, vqj
=aqj

> 0.
(7c2)

Lemma 3. From z > 0, n̄j > 0, and vqj
> 0, we deduce z > 0, Aj > 0,

z [ 2, and dp \ 2b.

The proof is given in Appendix B.3. We introduce one qi fixed but
arbitrary satisfying qmin < qi < qmax. With the sign of z, Aj unknown but
0 < vqj

< vqj+1
, we consider the only three possibilities: (i) Aqmin

> 0,
(ii) Aqmax

< 0 and (iii) Ai < 0, Ai+1 > 0 for one value of i. With positivity,
only the first case (i) remains, and we prove Lemma 3.
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In the particular case with qmax=qmin+1 (Class II), the proof is still
valid with the three cases Aqmin

> 0, Aqmax
< 0, and Aqmin

< 0, Aqmax
> 0.

Let us consider n (ii)
aqj

, 0 ] 0 now with velocities along the x > 0-axis and
number and location fixed: 1 [ qmin [ ...qj ... [ qmax [ p. The changes are:
Aj=n̄j(z − vqj

) and − vqj
in (7c2). From positivity we get z < 0, Aj < 0, and

z [ 2, dp \ 2b.
We have chosen some n (ii)

(x, 0) ] 0 with either x < 0 or x > 0. However all
other densities, not along the x-axis, are 0 or n (ii)=0. We must verify that
no binary collisions with vanishing loss (or gain) term and nonvanishing for
gain (or loss) term can exist. This study is done in Appendix C.

First (Lemma 4) we prove that no collisions with four velocities along
the x-axis exist.

Second, for Nested and Class I models, binary collisions with two
densities different from 0 along one semi-x-axis and two others equal to 0
either along the bisectors or along the yF-axis cannot exist (Lemma 5).

Third, for the Extended Class I or Restricted Class II models, studied
in Section 4, with nonzero (ii) state densities only along one semi-x-axis, we
have restrictions.

Finally (Lemma 6), for Class II, we can choose two densities n (ii)
p \ 1, 0

and n (ii)
p+S, 0 with S odd but not for all values. As an illustration, in (C.6) we

give some odd values of S which must be excluded and others that are
acceptable.

With dp greater than or equal to 2b and comparing with the DVMs
curves dpmax

(b) of Fig. 2a, we see that only the Class II, DVMs satisfy the
Cercignani continuous constraint d 4 2. There remain (Figs. 2a, b), two
domains: either b in the interval (0.1, 1) or b smaller than 0.1. For Class II
we have almost everywhere d=dH 4 2, the second continuous relation, and
this answers the Cercignani criticism. For the other models, dpmax

decreases,
when b decreases, towards dH=1 for b smaller than 10−3 (Class I) or
towards dH=0 (Nested) for b very small and d 4 2 not satisfied.

Finally, we present two other General Results deduced from the mass
and momentum conservation laws (7b). We define the mass and energy
ratios at the two asymptotic states, recall z, and deduce two relations
from (7b): First, from the first two conservation laws we eliminate J (ii) and,
second, we rewrite the momentum conservation:

z=M (i)/E (i), dM=M(i)/M(ii), dE=E(i)/E(ii),

2dM/dE=zz2(1 − dM)+dM, J (ii)/M(ii)=z(1 − dM).
(7e)

If now we assume only one or two (ii) states (called infinite or semi-
infinite), we can obtain from (7c–e) explicit results for the solutions. This
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depends also on the number of pth squares at the (i) state (for instance
p=1 and only one (i) state leads to the Broadwell (1) solution). However,
here we are mainly interested in the models satisfying the Cercignani con-
dition dpmax

4 2 and so will not consider p fixed. In Appendix B.4, we
briefly recall the first continuous relation, (2) deduced from Maxwellians at
two asymptotic states with dM and dT for the mass and temperature (or
internal energy) ratios, satisfied in DVMs only by the infinite solutions. In
(7f1), the relation is written for d=2, with z, and in (7f2), we add the two
(7e) relations. For infinite solutions, the two terms are zero in (7f2):

[2dM/dE − z(J(ii)/M (ii))2][1 − 3dM]+2dM[3 − dM]=0, (7f1)

[1+zz2(1 − dM)][1 − 3dM]+2[3 − dM]=0. (7f2)

The main result will be that the parameter b will have explicit values.
For brevity, we do not consider the semi-infinite solutions. (2–8) We consider
only one (ii) state and Class II, where p is only reduced to p greater than or
equal to pmax and d 4 2.

Infinite Class II Shock Solutions

In (7a–c) with, at the (ii) state, one n̄, A=n̄(q+z), q \ 1 we get n̄, z, z, dM,
and dE with (7e). Furthermore we deduce b for dpmax

4 2:

1=A/zz=qA=q2A/2z, n̄=2/3q2, z=2/q2, z=q/2,

zz2=1/2, J (ii)=qM(ii), dM=z/n̄=3, (7g)

dE=12/(1+dM)=3, dpmax
/2b 4 1/b=2/z or b 4 q−2.

The solutions (7g) satisfy (7f2). In fact, for q=1, dpmax
=1.9959 we have

b=0.9979, while for q > 1 the b values are b=q−2, leading to an infinite
number of fixed b values.

3.2. (ii) State, Conservation Laws for the Nicodin Model without

Rest-Particle

We still assume traveling waves g=x − zt (speed z), isotropic (i) state,
and at the (ii) state a fixed number of nonzero densities nx, y=n(ii)

x, y − n (i)
x, y.

The conservation laws [M], [J], and [E], in terms of nx, y are written in
Appendix B.5. For the mass and the momentum they still depend only on
macroscopic quantities, but for the energy conservation we must remake
explicit the nonzero densities at the (ii) state. The difficulty is to find solu-
tions with gain and loss collision terms of binary collisions either both
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vanishing or both nonvanishing. We retain four densities for the fixed
number of (ii) state densities: n (ii)

aj, ± 1 ] 0 (only two independent)

n (ii)
aj, ± 1, j=j1, j2=j1+1, aj1

=2j1 − 1, aj2
=aj1

+2, n (ii)
aj, 1=n(ii)

aj, −1.

We write the mass, momentum, and energy conservation laws deduced
from (B.8):

M(ii)=2 C
j2

j1

n (ii)
aj, 1, J (ii)=2 C ajn

(ii)
aj, 1,

E (ii)=C
j

(a2
j +1) n (ii)

aj, 1, aj=2j − 1 > 0,

(7aŒ)

J (ii)=z(M(ii) − M(i)), 2E(ii)=M(ii)+zJ (ii)+E(i),

z(E(ii) − E (i))=C
j

n (ii)
aj, 1aj(a2

j +1). (7bŒ)

We define z... and deduce:

z=M(i)/E(i) > 0, dp/2b=2/z, n̄j=n(ii)
aj, 1/E(i), j=j1, j2, Aj=n̄j(z − aj),

(7cŒ1)

1=2 C
j2

j1

Aj/zz=−2 C ajAj=C
j

(a2
j +1) Aj/z, aj=2j − 1 > 0 odd.

(7cŒ2)

Lemma 3Œ. From z > 0, n̄j > 0, aj > 0, we deduce z < 0, dp \

2(a2
j1

+1) b. (Appendix B.5). For j1=1, 2... Q dp > 4b, 20b,..., we recall
that d > 20b leads to d 4 2.

4. EXTENSIONS OF THE MODELS, INTERMEDIATE BETWEEN

CLASS I AND CLASS II

We consider two classes of models in Figs. 3 and 4.
First, the r-Extended Class I, pth models, r finite and fixed (written for

brevity r-ExtI.p), where we add to Class I a number of velocities of the
order of const.p but having 4 const.p2 velocities less than those of Class II.
So dH 4 1, with larger dp than those in Class I; however we cannot satisfy
the planar dimension 2.

Second, we consider the Restricted Class II, pth models (written for
brevity a-ResII.p with a finite), where the number of missing Class II
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(a)

(b) (c)

Fig. 4. –.– (a) Class II with a finite number p=3, 4, 5, 6 of squares and ––– 2-Ext.I, Class
I, r=2 with p increasing for d stable, (b) ––– 2-Ext.I, Class I, r=2, b=10−s, s=1,..., 5 and
–.– dp(b) for p=pmax=6, 52, 154, (c) a=5 and 5-Rest.II Class II, b=10−r, s=1,..., 5.

velocities is finite, 4a(a − 1) leading to dH=2 and satisfying the Cercignani
planar dimension. We add to the Class I model the integers parallel either
to the x or y axes. The main difference between these two classes of models
is that the number of these new parallels is either finite or increasing with p.

4.1. r-Extended Class I pth Models with dpmax
4 2 Not Satisfied

Only the p=1 square is common to Classes I and II. To Class I, in
addition to the velocities along the coordinates and the bisector axes
(x, y, y= ± x axes), we add the integers parallel to the y-axis wit
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x= ± 1,... ± r and parallel to the x-axis with y= ± 1,... ± r (r finite and
fixed). For r=1, 2,..., the p=2, 3,... squares are common to Class II and
the r-ExtI .p.

Lemma 7a. The r-ExtI .pth models are physical. We write the new
vF(x, y) and collisions:

1-ExtI .p vF: Class I, ( ± q, ± 1), ( ± 1, ± q), q=2, 3,..., p.(q − 1, 1)+(q, 0)

=(q − 1, 0)+(q, 1),

2-ExtI .p vFi: 1-Ext .p and ( ± q, ± 2), (q − 1, 2)+(q, 1)

=(q − 1, 1)+(q, 2), q=3, 4,..., p.

(8a)

For r=1, starting first with Class I, we consider successively the new
collisions and we can add the densities associated to (q, 1), q=2, 3,...p
(and the symmetric densities with respect to the x, y, y= ± x). Similarly for
r=2, starting first with 1-ExtI we can add successively the densities asso-
ciated to (q, 2), q=3,...p (and the symmetry). For r=3, 4... Extended...
starting with the r − 1 model, we add successively (q, r), q=r+1,...p, and
the symmetric densities.

In Figs. 3a, b (another interpretation in Section 4.2), we present the
3-ExtI .5,3-ExtI .11 models for r=3, p=5, 11. We see that the q=1, 2, 3, 4
squares are common with Class II. The main difference is the number of
missing Class II velocities, which is 4(2) for p=5 and 4(8)(7) for p=11.
The defect of these models, with r fixed is that when p increases, the
number of missing Class II velocities increases too much in order to
recover dpmax

4 2. Similarly in Fig. 3c, with r=2, p=15 for the extended
model, the number of missing Class II velocities is 4(13)(12). For b not
small, we find b intervals with d 4 2 but dpmax

goes to 1 when b goes to 0.
This is explained by the Hausdorff dimension dH=1 with Lr, Nr (size and
number of velocities) when p increases up to infinity. Calling NI and NII

the number of velocities for Classes I and II, the differences with Nr are of
the orders of either p or p2:

r \ 1 finite p \ r+1, Nr=4(r+1)(2p−r), Lr=2p, log Nr/log Lr Q p Q .1,
(8b1)

NII=4p(p+1)+1, NII −Nr=4(p−r)(p−1−r),

NI=8p+1, Nr −NI=4r(2p−r−1).
(8b2)

In Fig. 4a we present an example of 2-ExtI .pmax r=2 (including Class II,
p=1, 2, 3), with pmax in order that dpmax

remains stable for higher p values,
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and we compare with the Class II dp(b), p=3, 4, 5, 6 curves. The d3(b) is
below the Extended curve, while for p=4, 5, 6 they are slightly equal or
higher in a small b interval, but for b smaller they are both smaller and
going to 0 while the Extended goes to 1. Now for b ¥ [0.3, 0.95], we have
dpmax

4 2, while for larger r we have larger intervals but always the dH=1
limit when b goes to 0.

In Fig. 4b, still with 2-ExtI, r=2 for small b values, 10−s, s=1,... 5 we
present the dpmax

curve with pmax ¥ (6, 1000). We verify that the limit for b
very small is the dH=1 value. In order to have a connection with the finite
pth models, we present the dp(b) curves for p=6, 52, 154 and verify that
the limits are now 0 when b decreases.

4.2. Restricted Class II, a-Cross pth Models (Fig. 3), with dpmax
4 2

Satisfied

Instead of r finite in Section 4.1, we define a=p − r \ 2 finite (r arbi-
trary). p and r increase together and the number of missing Class II veloci-
ties is finite. The a-cross, p=a+r models have dH=2 and only a finite
number of missing Class II velocities. We rewrite (8b) with a=p − r \ 2,
and Nr becoming Na for the a-RestII .p models:

a \ 2 finite, p \ a+1, Na=4(p+a)(p − a+1),

La=2p, log Na/log La Q p Q .2, (8c)

NII − Na=4a(a − 1) finite, Na − NI=4[p(p − 1)+a(a − 1)] Q p Q ...

Comparing with Section 4.1, the important point is that Class II and
Restricted models increase similarly when p increases. As an illustration,
we write explicitly the missing a(a − 1) velocities (see Fig. 3) in the first
x > 0, y > 0 quadrant. They must be completed with (y, x):

a=2 : (p, p−1), a=3 : (p, p−1), (p, p−2), (p−1, p−2),

a=4 : (p, p−1), (p, p−2), (p, p−3), (p−1, p−2),

(p−1, p−3), (p−2, p−1),... (8d)

a : (p, p−1),... (p, p−a+1), (p−1, p−2)...(p−1, p−a+1), (p−2, p−3),...

(p−2, p−a+1),... (p−a+2, p−a+1)
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and (x Q y, y Q x) in (8d). We write the velocities (x, y) in the first posi-
tive quadrant and they must be completed with symmetries: exchanges
x Q − x, y Q − y and (x, y) Q (−x, −y):

(i) (x, y) : x=0, 1,... p=a+r Q (x, 0), (0, x), (x, x)

(ii) (x, y) : y=1, 2,..., r, x=y+1,... p=a+r Q (x, y) and (y, x).
(8e)

For the energy to mass ratio at the (i) isotropic state, written in (4bŒ)
for the Class II pth models, we eliminate the contribution coming from the
missing velocities:

a-cross, p=a+r models: 2E (i)/M(i)=dp/2b=Ap/(1/4+Bp),

Bp := C
p

q=1
e−bq2

(1+e−bq2
)+2 C

r

q=1
C
p

s=q+1
e−b(q2+s2), (8f)

Ap= C
p

q=1
e−bq2

q2(1+2e−bq2
)+2 C

r

q=1
C
p

s=q+1
(q2+s2) e−b(q2+s2).

In Figs. 3a–c, adding the new velocities to the Class I model or equiv-
alently eliminating the Class II missing velocities, we present the a-cross
2, 8, 13, r=3, 3, 2, p=5, 11, 15: 2-RestII.5, 8-RestII.11, 13-RestII.15
models. We still have 4a(a − 1)=8, 224, 634 less velocities than for the
Class II model, but these numbers do not increase when p increases. With
dH=2, we have numerically verified (a less than 16) for different a-cross
models, and b ¥ (0, 1), p larger than pmax that the Cercignani condition
dpmax

4 2 is satisfied. For b small we find pmax independent of a:

: b 1 0.5 0.1 10−2 10−3 10−4 10−5 10−6

pmax a+2 a+3 a+8 41 129 409 1293 4090
: . (8g)

For b larger than 1, as in Classes I and II, we have dp less than 2, but
still with dp larger than 2b (analytical proof not presented), we get dpmax

4 2.
In Fig. 4c, for b small ¥ (10−1,... 10−5), we present for 5-RestII.p, a=5

(80 velocities less than Class II), both the dpmax
4 2 and 4 curves dp(b) with

p fixed: 13, 41, 129, 409. These curves are going to 0 when b decreases.
However, we verify for these curves with p fixed that the domains with
dpmax

4 2 increase when p increases.

Lemma 7b. The Restricted Class II, a-Cross Models (Fig. 3d), are
physical. For a fixed, we start with the physical Class I model, show that
the first p=a+1 is physical and assuming that the p=a+r − 1 is physical
(r arbitrary), we prove (with three densities of a previous physical model)
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that the p=a+r model is physical. For brevity (due to the symmetries), we
consider only x \ y > 0.

(i) p=a+1 : (x − 1, 1)+(x, 0)=(x − 1, 0)+(x, 1).

We add successively (x, y=1) with x=2, 3,...a+1 and similarly (x Q y,
y Q x).

(ii) p=a+2 : (2, 1)+(1, 2)=(1, 1)+(2, 2), (x−1, 2)+(x, 1)=(x−1, 1)
+(x, 2).

First we add (2, 2) and successively (x, y=2) with x=3,...a+2 and
(x=2, y) with the changes of x, y.

(iii) p=a+r : (a+r − 1, 1)+(a+r − 1, −1)=(a+r − 2, 0)+(a+r, 0),
(a+r − 1, k)+(a+r, k − 1)=(a+r − 1, k − 1)+(a+r, k).

First, we add (a+r, 0). Second, we add successively (a+r, k), k=1, 2,...
r − 1. Third, similarly we add (x, y=r), x=r+1, r+2,...r+a − 1. Finally
with the square:

(a+r − 1, r)+(a+r, r − 1)=(a+r − 1, r − 1)+(a+r, r),

we add (a+r, r), and the a-cross models are physical.

5. REGULAR GRIDS WITH MESH STEPS ] 1

First, we assume that for Class I and II we add, for the vFi, all half-
integer coordinates, but still a uniform distribution, doing the same for the
Nicodin model with odd half-integer coordinates. The collisions along rec-
tangles or squares are still valid with (x, y) Q (x/2, y/2):

vFQ vF/2, vF2
Q vF2/4, E (i)

Q E (i)/4,

b Q 4b, z Q 4z, dp=4b/z Q 4b/z, dH Q dH,

and the models are still physical. The relations are invariant with the
change of b into 4b, and this is the only modification in curves d and b of
Fig. 2. Our main results dpmax

(b) 4 2, ] 2 for Class II, Nicodin, and
Nested, Class I are not changed. More generally, for a mesh step h finite,
the only changes are for q into qh, b into b/h2, z into z/h2 with, for the
dp(b) curves, the same geometrical structure. For the Class I with the defect
for the relation dpmax

=2, we do not improve with a more uniform concen-
tration of velocities along the coordinates or bisector axes (x, y, y= ± x).
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6. DISCUSSION

The motivation of this work was to answer Cercignani’s criticism of
DVMs. In the continuous theory, the energy to mass ratio, written with
gaussians e−bvF2

, is d/2b, where the dimension is d=2 for planar models and
only dp/2b in DVMs.

First, in Sections 2 and 3 (Fig. 1), we have considered, for the asso-
ciated DVMs ratios, four different classes of elementary pth squares
models, with the possibility of p going to infinity for the associated lattices:

(i) models with a rest-particle and Hausdorff dimensions dH=
0, 1, 2: Nested with a nonuniform distribution along the coordinates and
bisector axes (x, y, y= ± x), Class I with a uniform distribution along these
axe, and Class II, filling all integer coordinates when p is going to infinity;

(ii) for models without rest-particle, the Nicodin model with dH=2
fills odd-integer coordinates.

Second, in Section 4, we have studied two new classes of models which
are intermediate between Class I and II:

(i) Extended Class I with dH=1 (an infinite number of velocities less
than those of Class II).

(ii) Restricted Class II or a-Cross (a fixed) models (Fig. 3), with
dH=2 and only a finite number of velocities less than those of Class II.

For these DVMs, we write for the pth square model, the energy to
mass ratio at an equilibrium (i) isotropic state (with sums of gaussians
;e−bvFi

2
) giving dp/2b a fictitious dimension dp. For b fixed, and p increas-

ing, the dp are going to a stable dpmax
dimension, and these limits are fixed.

Then, for the models in Fig. 1, we compare these limits and the true
d=2 dimension. We find that this is possible only in a fixed b interval
b ¥ (0, bmax) and only for the Class II and Nicodin models with dH=2. For
the other Nested and Class I models, we find dpmax

less than 2 and the
limits, when b is going to 0, are the dH=0, 1 dimensions of the associated
lattices.

However, for Class II and Nicodin models, when b is larger than bmax,
these dpmax

limits are different from the planar d=2 dimension, even when
the number of velocities is increasing or the mesh steps are smaller.

So Cercignani’s criticism of DVMs is still partly valid. This means that
it is not sufficient to discretize, even with physical models, and that some
important properties of the kinetic theory are still missing.

For traveling DVM waves, we add to the above isotropic (i) down-
stream state, an upstream (ii) state and with conservation laws and positivity,
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we study the new DVM constraints. We find mainly that the intervals with
b larger than bmax must be excluded. It follows for Class II and Nicodin
models (Figs. 1c–d) (contrary to Class I and Nested models) that d equiva-
lent to 2 is satisfied. Similarly, for the Restricted Class II with dH=2
(Fig. 3) (contrary to the Extended Class I with dH=1), we find d equiva-
lent to 2 satisfied.

In conclusion, in order to satisfy Cercignani’s criticism of DVMs for
the continuous energy to mass ratio, we must consider only models with
dH=2 and add the constraints of the Rankine–Hugoniot DVMs conservation
laws. We notice that the Class II and Nicodin models (Figs. 1c, d), have a
uniform distribution of the velocities in the plane. But this is not necessary,
because this property does not hold for the Restricted Class II (Fig. 3),
satisfying also the continuous dimension condition.

We keep in Fig. 3, for these Restricted a models, the velocities along
the bisectors y= ± x. However, in the small squares of length a, including
the missing Class II velocities, we could also eliminate these velocities along
the bisectors, giving now 4a2 missing velocities, still a finite number. These
new models (for the sake of brevity, the results are not presented, but it is
sufficient to replace ;p

q=1 by ; r
q=1 in Eq. (8f )) have dH=2 and satisfy the

condition d equivalent to 2.
The results have been obtained mainly with mathematical tools

(lemmas) and numerical calculations (for instance when b decreases, then
pmax increases for dpmax

). What can we understand physically? These p
increases when b decreases mean that the results become close to the asso-
ciated lattices with Hausdorff dimensions 0, 1, 2 (Fig. 2b). Consequently,
we understand (Figs. 4a–c) why the Extended Class I and the Restricted
Class II give similar results to Classes I and II. But when b is large we find
with only the mass to energy ratios (contrary to the continuous theory)
either dpmax

decreases with the same dpmax
values (Fig. 2a) for our models

with rest-particle (different Hausdorff dimensions), or increases as the
Nicodin model without rest-particle. The explanation is that for b large the
pmax (Fig. 2b), are very small and, consequently, the links with the asso-
ciated lattices are missing. Now these defects disappear when we require
the constraints of the conservation laws, adding an upstream (ii) state.
However, in our Lemmas 3 and 3Œ the new constraints are mainly due to
positivity and were not necessary for b small, and so are not easy to
understand physically.

The standard use of DVMs being a finite number of velocities or p
fixed, we notice that for b fixed, the dp(b) curves increase with p increasing.
For b not small the dpmax

(b) limits (with increasing squares) require only a
finite number of squares. On the contrary, when b decreases we need more
and more squares, so that p must go to infinity when b is going to 0 and we
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must exclude the standard DVMs in the discussion with b going to 0. In all
cases we have found that the dimensional limit values are the same as the
Hausdorff dimensions. We recall that in the continuous theory, b is inversely
proportional to T (or EI). So we can understand that for b going to 0, we
recover the classical results associated to the lattice dimension. For a fixed
p number of squares and velocities, we must consider b finite, in fact b (or T, EI)
belonging to finite intervals. If we restrict ourselves to the dimensional phy-
sical constraint d 4 2, there remains only the Class II, Nicodin, and
Restricted Class II models in finite b intervals but larger and larger when p
increases.

Here, we have mainly considered the second continuous relation in
order to check the geometrical structures at the (i) state leading to d
equivalent to 2 when we add some (ii) state restrictions. For a study of
particular classes of (ii) state densities we have mainly studied the infinite
solutions with the first continuous relation satisfied. For solutions with two
densities different from zero along the semi x-axes, we only give conditions
in order to avoid collisions with loss and gain terms that are zero and dif-
ferent from zero. For a complete (ii) state study (for brevity not done here)
we will retain only the models giving d equivalent to 2 at the (i) state.

In the present paper, we retain only the Maxwellian continuous energy
to mass ratio relations and the Rankine–Hugoniot DVM relations for
physical models (here only three invariants: mass, momentum, and energy,
no more, no less). For the study we choose selected distributions of veloci-
ties in the plane. Here, in all models, with the simple tool (6–8) of collisions in
rectangles or squares, we prove for all sets of pth squares that they are
physical, and this is not always obvious, in particular when p goes to
infinity.

With the exception of the Nested (2) models, we have a regular grid for
our models with only a fixed mesh step 1. We have seen that with other
uniform distributions of the velocities with mesh steps different from 1 (but
finite), with scalings of the b and z parameters, we do not change the geo-
metrical structure of the d(b) curves or the solutions of our models.

It will be useful to generalize the present results in the d=3 dimen-
sion; we think that we will encounter analogies with lattices in the 0, 1, 2,
and 3 dimensions and that the best choice will be the models with dH=3.

For half-space DVM models(3, 4, 9–11), we have no velocities at the
interface with x=0; here this means no velocities, like the Nicodin model,
along the y-axis. The nontrivial proof is to determine the selected velocities
such that the partial pth models are physical. This was done for the Class
II (11) models. Concerning the present study of Cercignani’s criticism of
DVMs, the results certainly still hold because the Hausdorff dimension is
still dH=2.
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APPENDIX A: (FOR b FIXED, dp INCREASES WITH p)

A.1. Nested and Class I Models: dp > dp−1 or with Ap, Bp Written in

(4c1–2):

Ap(1/4+Bp − 1) > Ap − 1(1/4+Bp)? or Z=(ApBp − 1 − Ap − 1Bp) eba2
q > 0 with:

Z > C
q=p − 1

q=1
e−ba2

q[e−ba2
q(a2

p − 2a2
q)+e−ba2

p(2a2
p − a2

q)

+(1+2e−b(a2
p+a2

q))(a2
p − a2

q)] > 0.

Except for the first term, the others are positive, but the Nested first term
a2

p − 2a2
q with aq=2q − 1 is positive for q [ p − 1. There remains Class I:

aq=q and p2 − 2q2, which can be negative. We keep the first term and a
lower bound for the last one > 0:

X :=2q2 − p2, Zebp2
> C

q=p − 1

q=1
[(p2 − q2) eb(p2 − q2) − Xe−bX] > 0? (A.1)

We change q in p − q in the term with X: giving X :=2q2+p2 − 4pq and
still 1 [ q [ p − 1.

(i) If q/p > 1 − `2 /2 or X < 0 or Z > 0.

(ii) If q/p < 1 − `2 /2, X > 0, p2 − q2 − X=q(4p − 3q) > 0, Z > 0,
dp > dp − 1.

A.2. Class II model: dp > dp−1 or Z=ApBp−1 −Ap−1Bp > 0

For simplicity in the analytical proof, we define ap, bp, rewrite in (4bŒ),
both Ap, Bp, the energy to mass ratio, and Z with these new parameters
and we show that Z > 0:

ap :=C
p

1
q2e−bq2

, bp :=C
p

1
e−bq2

, Ap=ap(1+2bp) > Ap−1, Bp=bp(1+bp),

dp/2b = Ap/(1/4+Bp)=ap(1+2bp)/[1/4+bp(1+bp)], (A.2)

Z = ap(1+2bp) bp−1(1+bp−1)−ap−1(1+2bp−1) bp(1+bp)= C
3

i=1
Zi > 0.
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We prove both Z1 > 0 and Z2+Z3 > 0:

Z1=(1+2bpbp − 1)(apbp − 1 − ap − 1bp)

=(1+2bpbp − 1) C
p

1
e−b(p2+q2)(p2 − q2) > 0,

Z2=2bpbp − 1(ap − ap − 1)=2p2e−bp2
bp − 1(bp − 1+e−bp2

),

Z3=apb2
p − 1 − ap − 1b2

p=e−bp2
[p2b2

p − 1 − ap − 1(e−bp2
+2bp − 1)],

ebp2
(Z2+Z3)=C e−bq2

[(3p2 − 2q2) bp − 1 − q2e−bp2
] > 0 or dp > dp − 1.

(A.3)

A.3. Nicodin Model: For b fixed, dp > dp−1 or with (4cœ)

cpdp−1 > cp−1dp or

p(p − 1) dp − 1 − cp − 1/4 > 0

or p(p − 1)+ C
p − 1

q=2
(p − q)(p+q − 1) e−4bq(q − 1) > 0.

(A.4)

APPENDIX B: DVM CONSERVATION LAWS

B.1. DVMs for Nested-Class I models(2−8) with (4a)–(7a) for

M (k), J (k), E (k)

We consider similarity solutions, with g=x − zt along the x-axis and
rest-particle r. Two densities with vF(x, ± y) are equal. For a qth square, we
add 5 independent densities: n± x, 0, n0, x, n± x, x, x=aq. Here we write the
mass, momentum, and energy conservation laws [M], [J], [2E]: and in
(7a, b) deduce the two asymptotic (i), (ii) states relations from n (ii)

x, y=
n (i)

x, y+nx, y. We briefly give some explanations. For the mass sum of nx, y

terms, from “t+x“x applied to nx, y(g=x − zt), we deduce (x − z) nx, y

terms. So for the rest-particle and n0, y along the y-axis we only get − zn0, y,
while those with opposite x values give ( ± x − z) n± x, y. For [J], we
multiply these terms by the x projections along the x-axis, while
for 2[E], we multiply by x2+y2. We define [M] ±,... associated to the
densities n± x, y:
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[M] ±=C
p

1
( ± aq − z)(na± q, 0+2na± q, aq

),

0=[M]=−z(r+2 C
q

n0, aq
)+[M]++[M]−,

[J] ±=C
p

1
± aq( ± aq − z)(na± q, 0+2na± q, aq

),

0=[J]=[J]++[J]−,

[2E] ±=C
p

1
a2

q( ± aq − z)(na± q, 0+4na± q, aq
),

0=[E]=C
p

1
a2

qn0, aq
+[E]++[E]−.

(B.1)

B.2. DVMs for Class II Models(8) aq=q, with (4aŒ)–(7a) for

M (k), J (k), E (k)

(4q+1) independent nx, y for Class II, adding n± q, s, n± s, q, s=1, 2,...
q − 1,

[M] ±=2 C
q

C
q − 1

s=1
( ± q − z) n± q, s+( ± s − z) n± s, q,

[M]= · · · +[M]++[M]−,

[J] ±=2 C
q

C
s

± q( ± q − z) n± q, s ± s( ± s − z) n± s, q,

[J]= · · · +[J]++[J]−,

[E] ±=C
q

C
s

(q2+s2)[( ± q − z) n± q, s+( ± s − z) n± s, q],

[E]= · · · +[E]++[E]−.

(B.2)

B.3. Proof of dp \ 2b for the Nested, Classes I and II Models

Lemma 3. From z > 0, n̄j > 0, vqj
> 0, we deduce z > 0, Aj > 0, z [ 2

and dp \ 2b:
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First, with Aj=n̄j(z+vj) we rewrite the three relations in (7c), intro-
ducing an arbitrary qi:

(a) C
qi

qj=qmin

Aj+ C
qmax

qj=qi+1

Aj=zz,

(b) C
qi

qj=qmin

Ajvqj
+ C

qmax

qj=qi+1

Ajvqj
=1,

(c) C
qi

qj=qmin

Ajv
2
qj

+ C
qmax

qj=qi+1

Ajv
2
qj

=2z, vqj
> 0, qmin < qi < qmax.

(B.3)

With z+vj < z+vj+1, we consider three cases: (i) Aqmin
> 0; (ii) Aqmax

< 0;
(iii) z+vi < 0, z+vi+1 > 0 or Ai < 0, Ai+1 > 0. Positivity gives only case (i)
possible:

(i) If vqmin
+z > 0, we get Aqmin

> 0, all Aj > 0, and from (a): zz > 0 or
z > 0.

(ii) If vqmax
+z < 0, we get z < 0 and with vqj

< vqmax
, all Aj < 0. The

lhs of (b) is negative while the rhs is positive. This case is not possible.

(iii) There remains for one vqi
: Ai < 0 while, due to vi+1 > vi,

Ai+1 > 0. Then due to vj > vi+1 for j > i+1, and vj < vi for j < i, we get two
sets of Aj < 0 or Aj > 0:

z < 0, Aqmin
< 0, Aj < 0 for j [ i, Ai+1 > 0, Aj > 0 for i+1 [ j [ qmax.

We multiply (b) by vqi+1 and subtract (c), giving:

C
qi

q1

vqj
(vqi+1

− vqj
) Aj+ C

qmax

qi+1

vqj
(vqi+1

− vqj
) Aj=vqi+1

− 2z, z < 0.

The rhs is positive while the lhs is negative with the two terms being pro-
ducts of positive and negative factors. So this case is not possible.

There remains only the first case of (i) with all Aj > 0 and z > 0 for (a),
(b), and (c). From both the ratio (a)/(b), vqmin

[ vqj
[ vqmax

and the link
between z and dp we get:

C Aj/ C Ajv
2
qj

=z/2 or v−2
qmax

[ z/2 [ v−2
qmin

[ 1 or z [ 2,

or dp=4b/z \ 2b. (B.4)
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B.4. Continuous Theory Mass Ratio Relation(2) with d-Dimensional

Maxwellian

M(2pT)−d/2 exp −5(v1 − V)2+C
d

2
v2

i
6;2T with M (k), T (k), V (k), k=i, ii

for the masses, temperatures, and velocities at two asymptotic (i), (ii) states.
We write dM and dT for the mass and temperature (or internal energy)
ratios. From the conservation laws we get:

MV=const, M(V2+T)=const, MV(V2+(d+2) T)=const. (B.5)

We eliminate V (ii) in the first two relations and V (i) in the last one:

V(ii)=V(i)M(i)/M(ii)
Q (V(i))2 (dM −1)=T(i) −T(ii)/dM,

1 < dM=(d+1+1/dMdT)/(1+(d+1)/dMdT) [ d+1, dM=d+1 for dT=0.
(B.6)

In DVMs, except for infinite shocks, this relation is not satisfied and
gives a constraint. (2) We write (B.6) for the isotropic (i) state and for dT,
replace the ratio with internal energy: dEI=2E/M − (J/M)2, where
J (i)=0. We write dE=E(i)/E (ii) for the energy ratio:

[2dM/dE − (J (ii)/M(ii))2 M (i)/E(i)][1 − (d+1) dM]+2dM[d+1 − dM]=0.
(B.7)

(B.7) with d=2 and z=M(i)/E (i) gives the relation (7f1).

B.5. DVMs for the Nicodin Model: (4aœ)–(7aŒ) for M (k), J (k), E (k)

Still Similarity Solutions

g=x − zt along the x-axis but without rest-particle and vF along the
x-axis. Two densities with vF(x, ± y) are equal. We write the energy con-
servation laws for densities with two asymptotic (i) isotropic, (ii) states,
n (ii)

x, y= n (i)
x, y+nx, y:

[M] ±/2= C
p

q=1
( ± aq − z) n± aq, aq

+C
q

C
q − 1

s=1
( ± aq − z) n± aq, as

+( ± as − z) n± as, aq
,

[J] ±/2=C
p

1
± aq( ± aq − z) n± aq, aq

+C
p

1
C
q − 1

s=1
± aq( ± aq − z) n± aq, as

± as( ± as − z) n± as, aq
,
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[E] ±=C
p

1
2a2

qn± aq, aq
( ± aq − z)

+C
q

C
s

(a2
q+a2

s )[( ± aq − z) n± aq, as
+( ± as − z) n± as, aq

],

[M]=[M]++[M]−, [J]=[J]++[J]−, [E]=[E]++[E]−, (B.8)

Lemma 3Œ. dp=4b/z \ 2b(a2
j1

+1). We rewrite (7cŒ) with Aj=
n̄j(z − aj), n̄j > 0:

1=2 C
j2

j1

Aj/zz=−2 C ajAj=C
j

(a2
j +1) Aj/z, aj=2j − 1 > 0, z > 0, aj > 0.

(B.9)

With j=2j − 1,=j1, j1+1 and the unknown z sign, we consider the
only four possibilities:

(i) Aji
> 0, i=1, 2, which is not compatible with the second relation

in (B.9);
(ii) Aji

< 0 giving z < 0 with the last relation in (B.6);
(iii) Aj1

> 0, Aj2
< 0 with (B.6) giving aj1

< z < aj2
and z > 0;

(iv) Aj1
< 0, Aj2

> 0 giving with (B.9) aj2
=aj1

+2 < z < aj1
, which is

incompatible.

There remains only (ii), (iii) with Aj2
< 0 and z Y 0. From the last two

relations in (B.9), we deduce Aji
and define X :=2(a2

j1
+2aj1

− 1) > 0:

Aj2
=(a2

j1
+1+2zaj1

)/2X, Aj1
=−[a2

j1
+4aj1

+5+2z(aj1
+2)]/X.

(B.10)

If z is positive, case (iii), we deduce Aj2
> 0, and this is not possible.

There remains (ii), with Aji
< 0, z < 0 leading to two conditions: from

(B.10):

Aj2
< 0 or − z > a :=(a2

j1
+1)/2aj1

,

Aj1
< 0 or − z < b=(a2

j1
+4aj1

+5)/2(aj1
+2),

while the remaining condition b > a is similar to X > 0. We eliminate z in
(B.9):

C Aji
/C Aji

(a2
ji
+1)=z/2 giving (a2

j2
+1)−1 [ z/2 [ (a2

j2
+1)−1,

2b(a2
j2

+1) \ dp=4b/z \ 2b(a2
j1

+1). (B.11)
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APPENDIX C: NESTED, CLASS I-II MODELS WITH n (ii)
x, 0 ] 0 FOR

ONLY x > 0 OR ONLY < 0

Lemma 4. For the Nested-Class I-II (ii) state, no binary collisions
along the x-axis exist. From the energy and momentum conservations,
collisions with (p, 0), (q, 0), (r, 0), and (s, 0) (four different velocities) are
not possible.

p+q=r+s, p2+q2=r2+s2, pq=rs Q p − r=(p − r)(s/p)2

or p=r or =s. (C.1)

Lemma 5. For Nested, Class I models, collisions between vFi along
one semi-x-axis (y=0) and (i) either bisectors y= ± x ((x, ± x)) or (ii) the
yF-axis are not possible:

p > 0, q > 0

(i) (p, 0)+(q, 0)=(r, s)+(t, u)

or s=−u=r=t or (p, 0)+(q, 0)

=(s, s)+(s, −s) Q p+q=2s, p2+q2=4s2
Q pq=0

or p=0 or q=0.

(ii) (p, 0)+(q, 0)=(0, r)+(0, s) Q p+q=0 Q

either p or q < 0. (C.2)

However, for r-Extended Class I, with densities only n (ii)
p, 0 ] 0,

n (ii)
p+s, 0 ] 0, s integer, along one semi-x axis and 0 in the plane, we have

restrictions. We begin with r=1:

(p, 0)+(p+s, 0)=(p+l, r)+(p+s − l, −r) l(s − l)=r2.

For r=1 and l=1, s=2, we see that such collisions with loss or gain
terms different from or equal to 0 are possible. Similarly for r=2 and
either l=1, s=5 or l=2, s=4... .

Lemma 6. For Class II with only n (ii)
p, 0 ] 0, n (ii)

p+1, 0 ] 0, p integer, no
collisions with only n (ii) ] 0 in loss (or gain) term exist. A similar property
also holds for n (ii)

p, 0 ] 0, n (ii)
p+S, 0 ] 0, but with only particular odd values of S.

1. For (p, 0), (p+2s), collisions exist with momentum and energy
relations satisfied:

(p, 0)+(p+2s, 0)=(p+s, s)+(p+s, −s) s=1, 2,... integer. (C.3)
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For these collisions if both (p, 0) and (p+2s, 0) have n (ii) ] 0, we have
gain (or loss) terms ] 0, but loss (or gain) term =0 and similarly with
(p+1, 0) and (p+1+2s, 0).

So we can choose (p, 0), (p+1, 0), p=1, 2,... with n (ii) ] 0, but we
must exclude (p, 0), (p+S, 0) with S even. It remains possible to have
collisions but with loss and gain terms =0:

(p, 0)+(p+1, r)=(p, r)+(p+1, 0), r= ± 1, ± 2, ± 3. (C.4)

2. To (p, 0) ] 0, can we add (p+S, 0) ] 0, S odd without collisions
with vanishing loss or gain terms? We write possible collisions with other
densities equal to 0 in the plane, giving an energy condition:

(p, 0)+(p+S, 0)=(p+l, r)+(p+S − l, −r) l(S − l)=r2, (C.5)

with S odd and l and r arbitrary integers. With for the first term, the lhs
different from zero and the rhs equal to zero, we must exclude the
(p+S, 0) densities satisfying (C.5), except for values where the energy
condition (second term) cannot be satisfied.

For the energy condition with l, S − l either odd, even or even, odd, but
l(S − l) even, we deduce r even. It is sufficient to start with r=2, 4, 6, 8...
and to verify whether l and S odd are possible. As an illustration, we give
for 1 < S odd < 30 the possible S, l, and r values satisfying (C.5):

:S 5 13 15 17 25 25 29
l 1 9 3 1 5 9 4
r 2 6 6 4 10 12 10

: . (C.6)

Consequently, we must exclude these (C.6) (p, 0) and (p+S, 0). However,
we can consider, for instance, (p, 0) and (p+S, 0) with S=1, 3, 7, 9, 11,
21, 23, 27 < 30.
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